Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using MRI and Structural Network Features

نویسندگان

  • Rizhen Wei
  • Chuhan Li
  • Noa Fogelson
  • Ling Li
چکیده

Optimized magnetic resonance imaging (MRI) features and abnormalities of brain network architectures may allow earlier detection and accurate prediction of the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). In this study, we proposed a classification framework to distinguish MCI converters (MCIc) from MCI non-converters (MCInc) by using a combination of FreeSurfer-derived MRI features and nodal features derived from the thickness network. At the feature selection step, we first employed sparse linear regression with stability selection, for the selection of discriminative features in the iterative combinations of MRI and network measures. Subsequently the top K features of available combinations were selected as optimal features for classification. To obtain unbiased results, support vector machine (SVM) classifiers with nested cross validation were used for classification. The combination of 10 features including those from MRI and network measures attained accuracies of 66.04, 76.39, 74.66, and 73.91% for mixed conversion time, 6, 12, and 18 months before diagnosis of probable AD, respectively. Analysis of the diagnostic power of different time periods before diagnosis of probable AD showed that short-term prediction (6 and 12 months) achieved more stable and higher AUC scores compared with long-term prediction (18 months), with K-values from 1 to 30. The present results suggest that meaningful predictors composed of MRI and network measures may offer the possibility for early detection of progression from MCI to AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Hippocampal Atrophy Studying in Alzheimer's Disease Diagnosis Using Brain MRI Images

Background and Aim: For effective treatment of Alzheimer's disease (AD), it is important to accurately diagnosis of AD and its earlier stage, Mild Cognitive Impairment (MCI). One of the most important approaches of early detection of AD is to measure atrophy, which uses various kinds of brain scans, such as MRI. The main objective of the current research was to provide a computerized diagnostic...

متن کامل

Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion

Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted increasing attention in Alzheimer's disease (AD) research. An accurate prediction of conversion from MCI to AD can aid clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based on the original biosignatures are ...

متن کامل

Value of diagnostic tests to predict conversion to Alzheimer's disease in young and old patients with amnestic mild cognitive impairment.

Using the database of the Alzheimer's Disease Neuroimaging Initiative, we examined the value of neuropsychological assessment, structural magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) biomarkers, and FDG-PET scanning with respect to prediction of conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD). We tested the hypothesis that CSF biomarkers and FDG-PET wo...

متن کامل

Prediction of Mild Cognitive Impairment Conversion Using a Combination of Independent Component Analysis and the Cox Model

Mild cognitive impairment (MCI) represents a transitional stage from normal aging to Alzheimer's disease (AD) and corresponds to a higher risk of developing AD. Thus, it is necessary to explore and predict the onset of AD in MCI stage. In this study, we propose a combination of independent component analysis (ICA) and the multivariate Cox proportional hazards regression model to investigate pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in aging neuroscience

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016